The Zika virus commandeered the transmissive vector of the Aedes mosquito when junked tires filled with water, modifying the mosquitos’ breeding pattern. Allowing for a rapid spread of the virus. We change the environment. The environment changes us. In the United States we are seeing an acceleration in the acquisition and presentation of several tick-borne diseases. Thought in part to reflect environmental and local climate changes. Several different diseases exist. Lyme is perhaps the most well recognized and most commonly diagnosed. Lyme is due to the Ixodes tick, which carries and transmits the spirochete (bacteria) Borrelia. The infection rate is region-dependent, but the environmental “cline” of the tick is spreading. Several current studies propose climate-related alterations of deer and rodent populations as potential vehicles for the dissemination of the disease. A bulls-eye rash typically forms within a week of a tick bite. The initial infection is associated with fever, malaise and joint pain. But a full 30-50% of people exposed don’t develop these symptoms. Initial symptoms in some of the other tick borne illnesses (which will not be covered here) tend to be severe. People tend to get really sick when infected by a bartonella or babesia species. Borrelia, the Lyme organism, tends to be a bit more covert and sometimes a little less obvious. These are the more challenging cases. The cure rate with an extended course of the antibiotic doxycycline is pretty high if you are infected by Borrelia and treated within the first weeks to months of exposure. Things get tricky when one starts to consider whether or not, and the degree of which, borrelia can persist in the body and central nervous system (CNS). Studies of infected patients show that antibodies to the bacteria may persist in patients without symptoms, or be absent in patients that have persistent neurological symptoms.[1] It’s hard to know exactly, and it’s hard to know if extended courses of intravenous antibiotics in Lyme specialty clinics really make any difference in the long run. To my knowledge, there have been no clinical trials looking at any objective markers of the benefits of long term antibiotic administration, particularly via the intravenous route. Subjective improvement may be shown, but the human mind and the power of placebo is capricious. It is hard for me to recommend such treatments without measurable clinical endpoints such as the elevated Cerebrospinal Fluid (CSF) white blood cells in the study quoted above, or other measurable confirmation of persistent disease. The CDC, in a 2006 expert opinion, specifically recommends against the use of long term IV antibiotics due to the lack of supporting data for its use. I am including a link to the manuscript here. It is a fairly comprehensive look at the biology, epidemiology and treatment recommendations for Lyme and the other tick borne diseases encountered in our country.[2] Understand that this does not mean that there is no benefit of long term antibiotic use. It only means that a consensus of national experts, reviewing the published data by 2006, found no studies to support this practice. A large, prospective, randomized and blinded trial (the “gold standard” of clinical studies) was published in the esteemed New England Journal of Medicine in 2016. The study looked at prolonged courses of oral antibiotics after initial Lyme treatment in almost 300 patients. The initial treatment protocol was aggressive – two weeks of daily IV Ceftriaxone, followed by prolonged antibiotic treatments or placebo. In the end, there was no difference in detailed symptom scores between the groups. Suggesting no improvement with prolonged treatment.[3] By the CDC recommendations, initial treatment may include either oral or IV routes. The IV route recommended for more severe or neurological expressions of the disease. Generally, when diagnosed early and without severe neurological symptoms, Lyme can be treated with orally administered antibiotics. Part of the problem with Lyme is inherent in how a diagnosis is made. The diagnosis is clinical, which means it is not absolutely defined by a laboratory marker. If a person’s blood pressure is 200/140. They are hypertensive. A person with a hematocrit of 20 is severely anemic (range 36-45). A person with a sodium of 120 is severely hyponatremic…and so on. The technology of looking for Lyme disease at this point is based on identifying enough distinguishing characteristics to make an overwhelming case of the bacteria’s presence. There is no single “ah-ha” marker. All possibilities occur along a spectrum. Let’s examine this more fully. Our immune system responds to a portion of the organism, and an immune “memory” is initiated when we are infected by an organism. In acute infections, our body makes high levels of the antibody IgM. This is a large antibody that is typically short lived typically for weeks to months. As the IgM wanes, our body starts to manufacture more numerous and enduring antibodies of the IgG variety. Did you have chickenpox at age 6? You will test positive for the IgG antibody to the varicella virus at ages 10, 40, 60 and 90. The same applies to the Borrelia bacteria but without a single identifying marker. We must rely on a constellation of markers from the IgM and IgG stables. But there is a catch. The catch is that none of the markers are indisputably distinct for the bacteria responsible for Lyme disease. The proteins that are associated with, and measured for Lyme, are shared with a host of other bacteria. We have likely been exposed to one or more of these “other” bacteria in the course of our lives, so we may harbor an antibody “memory” of these exposures. The task is reminiscent of the blind men trying to identify an elephant. Individually a stout leg, floppy ear and tufted tail may be associated with several other animals and things. A rhinoceros also has a stout leg and a large leaf could resemble an elephant’s ear. When several identifiers are assembled together there is agreement on “elephant.” And with more components that define “elephant,” perhaps adding a sharp tusk and wheezing trunk, there can be consensus that indeed there is an elephant. Making a diagnosis of Lyme’s is similar to this task. An initial screen with high sensitivity is first made, known as an IFA study. This will likely not miss a diagnosis of Lyme, but in exchange for not missing any true cases is willing to accept some false positive diagnoses. At this point the usual screen reflexes to a series of tests known as Western Blots, a collection of several antibody markers (bands) against a tusk, a tufted tail, a stout leg or a floppy ear. According to the CDC, if 2 out of 3 of the IgM antibodies are positive, or 5 of the 10 IgG antibodies are positive, enough of these markers, these bands, exist to define a diagnosis of Lyme. Enough markers and the blind men agree on the consensus of “elephant.” Enough bands confer a diagnosis of Lyme. So if a patient presents with a “bulls-eye” rash, a history of a tick bite, and several weeks of low grade fevers and fatigue with 3 positive IgM markers and no IgG markers, they have Lyme disease and should be treated. Similarly, a person with one IgM marker, seven positive IgG bands and a vague recollection of feeling bad after camping the prior year may similarly have a diagnosis of Lyme. Treatment is similarly merited, but success is somewhat diminished after time. The Neurology paper suggests that antibiotics can clear Lyme disease, but system persistence may still plague some patients. So what gives? There is little debate that the Borrelia spirochete can cause significant disease, and that any significant stressor to the human body can wear us down and present with a wide array of symptoms. I am just not convinced that all post-Lyme symptoms are directly related to the original infection. I have seen significant arrays of dysfunction in numerous systems following an exposure – nutritional markers are low, the gut isn’t working well, cortisol is dysfunctional and hormones are off. In this context, I work with my post-Lyme patients through the Health Pyramid. Addressing and optimizing the body’s systems – cleaning up the diet, normalizing cortisol, fixing the gut, removing immunogenic foods and balancing hormones. I believe that most people suffering with “chronic Lyme Disease” will find that their symptoms subside over time if all systems are addressed and optimized. In summary, I believe Lyme Disease is a significant, evolving threat to our health and many people may have had exposures. We may be underdiagnosing the disease by simply failing to test for the spirochete. I am additionally concerned by overdiagnosis and overtreatment, subjecting a patient to extensive, invasive and potentially injurious interventions. The essence of health is found in balance. Yes, you may require antibiotics to treat Lyme Disease. Yes, there may be some poorly understood fallout from the initial infection. And yes, our understanding of the disease is still evolving, with clinical studies underway as I write. I do not claim to have all the answers. I am not sure anybody does. But rest assured that if the remainder of the Health Pyramid is not addressed in the wake of a tick-borne infection, it is unlikely that you will ever feel completely well again. Complete health is found in addressing the body as a constellation of systems. Including those found in the environment – toxins, chemicals, foods and in the case of Lyme, microbes. [1] Neurology. 1993 Jan;43(1):169-75.Borrelia burgdorferi-specific intrathecal antibody production in neuroborreliosis: a follow-up study. This study remarkably looked at initial, and repeat studies of cerebrospinal fluid in 27 known Lyme-positive patients. Antibody testing confirmed neurological Lyme before treatment, and was repeated after treatment to see if the infection had cleared. It demonstrated that antibody production may persist, but without evidence of continued immunologic responses (persistently elevated white blood cells) to the infection. The conclusion was that antibody production may persist for years, without clinical signs of active disease. [2] https://academic.oup.com/cid/article/43/9/1089/422463/The-Clinical-Assessment-Treatment-and-Prevention [3] NEJM 2016 March 31; 374(13): 1209-20. Randomized Trial of Longer-Term Therapy for Symptoms of Lyme Disease.
5 Comments
Kelly
8/23/2018 05:35:55 am
Excellent article!
Reply
Debra Alguire
10/31/2018 11:41:58 am
This is a very good article! Thank you!
Reply
Kimberly Hart
3/15/2019 08:30:03 pm
One of our family friends was diagnosed with Lymes disease years ago...I won’t hesitate to recommend this article
Reply
8/13/2024 02:35:30 pm
It's difficult to know precisely, and it's difficult to be aware assuming that lengthy courses of intravenous anti-microbials in Lyme specialty centers truly have any effect over the long haul. As far as anyone is concerned, there have been no clinical preliminaries checking out at any true markers of the advantages of long haul anti-toxin organization,
Reply
Leave a Reply. |
Categories
All
Archives
June 2017
|